
I 15-A6 229 MANUAL AND COMPUTER-AIDED SEQUENTIAL DIAGNOSTIC t/1
INFERENCEI(UI SOUTHEASTERN CENTER FOR ELECTRICAL

Ikwi.*IVS ENINEERRING EDUCATION INC ST CLOUD FL S E GORDON
JU 5AHLTP-96-SI F/G 9/2 NL



LML

11.06

liii,

'I1.25 .416

"wmIcmOO reu"~IC TEtWT

M-&M MA_ OF W W*



IA

AFHRL-TP-4-51

AIR FORCE R
MANUAL AND COMPUER-AIDED SEQUENTIALH U ; DIAGNOSTIC INFERENCE

On "

Sallie E. Gordon
BeApMertgont of P$,Wbole, W

N Ihdivoe'sit of lake

N No, dko Ida 4s

LOGISTICS AND HUMAN FACTORS DIVISION
Nright-Patterson Air Force Base. Ohio 45433-6503R

E
June 1985

Fil Teohtcial Paper for Period Nay 14 - Auut 1104

R Approved for public release; distribution unlimited.

S LABORATORY

DTIC AIR FORCE SYSTEMS COMMAND
E ILECT BROOKS AIR FORCE BASE, TEXAS 78235-5601

JUL03 1W U
S 1 85 6 10 015

_,___-p,,. __,,_,, .___-_. _ . .. ... .. .. . ... . .... . .....



--

NOTICE

hon governeent drwings, specifications, or other data are used for aly

purpose other than in connection with a definitely BovrMsnt-related

procureant, the Untted States Goverment Incurs n responsibility or say
obligation whatsoever. The fact that the Goverment my have formulated or
in any way supplied the slaid drawings, specifications, or other data, Is
not to be regarded by Implication, or otherwise i any manor construed, as

licensing the holder, or any ether person or corporation or as conveying

any rights or permission to masnfacture, uses or sell any patented
invention that my in any way be related thereto.

The Public Affairs Office has reviewed this paper, and it Is releasable to
the National Technical Information Service, where It will be available to
the general public, including foreign nationals.

This paper has been reviewed and is approved for publication.

OONALD C. TETHEYER, Colonel, 3SAF
Chief, Logistics and Numn Factors Division

DIC TAB
U1J18 Unoued 0
Justiflotio

D1StrJabu'L1=/ -

A & anMI"J 111lty Oo ogg

spool"

I -

• 'I ._-_. r-



it ,,

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE .Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMSER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFHRL-TP-84-51

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Southeastern Center for (If applicable) Logistics and Human Factors Division
Electrical Engineering Education

6. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Central Florida Facility Air Force Human Resources Laboratory
1101 Massachusetts Ave Wright-Patterson Air Force Base, Ohio 45433-5000
St Cloud, Florida 32769

B. f4AME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Air Force (If applicable) F49620-82-C-00350Office of Scientific Research F92-2C03

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Bolling Air Force Base PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

Washington, DC 20332 9983 04 51
II TITLE (Include Security Classification)

Manual and Computer-Aided Sequential Diagnostic Inference

12 PERSONAL AUTHOR(S)

Gordon, Sallie E.

13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT
Final FROM 25 May 84 TO 20 Aug 84 June 1985 16

16 SUP MENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
IELD GROUP SUB-GROUP automation inference task

1 05 09 command and control systems predictive models

19 tSTRACT (Continue on reverse if necessary and identify by block number) ....
This paper describes a pilot study on how human subjects process information during a diagnostic inference

task. The objective was a descriptive/predictive model of the Inference task and how that task could be affected
by implementation of an automated system. The study directly supported research being conducted by AFRL on
quantitative techniques to predict the impacts that automation may have on operator performance, by defining its
interaction with the operator's information processing (Modelling Impacts of Automation on Non-Automated Tactical
Command and Control (C2 ) Systems). The pilot study involved testing human subjects who had to Infer the
identity of two fictitious diseases by sampling up to eight symptom dimensions. A set of process and performance
variables were selected for measurement. Signal detection theory served as the data collection design. Results
were in Tine with anticipated outcomes (i.e., certainty Increased as more cues were sampled)l however, certainty
rate of increase was highest for trials where subjects sampled four cues and lowest for trials where subjects
sampled eight cues (total number of cues was eight). The pilot study helped formulate a list of critical
variables expected to affect the operator's Information processi and defined plausible relationships betwen
those processes and automation assistance. 5 ..----- ' Il

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. A 6TRA SECURITY CLASSIFICATION
(iIUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. DTK USERS Uncles if led

22a NAME OF RESPONSIBLE INDIVIDUAL Nancy A. Perrigo 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL
Chief, STINFO Office (512) 536-3877 1 AFHRL/TSR

00 FORM 1473, 94 MAR 83 APR edition may be used unti exhusted. SECURITY CLASSIFICATION OF THIS PAGE
All other edtlions ore obsolete.

Unclassifi ed

.d Ail,.



AFHRL Technical Paper 84-51 June 1986

MANUAL AND CONPUTER-AIDED SEQUENTIAL

DIAGNOSTIC INFERENCE

By

Sallie E. Gordon

Department of Psychology

University of Idaho
Moscow, Idaho 83843

LOGISTICS AND HUMAN FACTORS DIVISION

Vright-Patterson Air Force Base, Ohio 45433-6503

Reviewed and submitted for publication by

Bertram W. Crean

Chief, Ground Operations Branch

This publication is primarily a working paper.
It Is published solely to dcoet work perfor m.

/ '- -



I,

SIUARY

It is becoming increasingly obvious that computerized automation can be a useful atd for a

wide variety of positions in the command and control network where many of the tasks involve

situational assessment or "diagnostic inference.' To optimally combine human talent and

computer-aiding systems, one must know how the human operator performs the task unaided (and

under what circumstances), what subtasks can be allocated to the machine, and what variables

affect operator acceptance of the aiding system. This paper presents a theoretical model of the
human performance of a diagnostic inference task when unaided by machine, including the variables

affecting those inference processes; and a preliminary model of how a computer-aiding system

might be expected to fit into the diagnostic system.
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PREFACE

The objective of this research was a theoretical model of how human subjects
perform a diagnostic Inference task unaided by automation. In addition, a preliminary
model of how a computer-aiding device might be expected to fit into the diagnostic
system was Conceptualized.

This study supported research being conducted In VU S17-06-O6, NWdeling Impacts
of Automation on No-Atomated Tactical Command. and Control (C2 ) Systems. This
project concerns the prediction of changes In cognitive performance as a function of.
various kinds of automation. The methodology to be developed will assist planners in
designing future automated system that will optimize hums performance. Technical
Issues confrontn this research concern the selection or development of quantitative
models that can accurately depict humes cognitive process and performance, and the
tools and techniques which can capture the hifher-level interests between operator and
automation.

The results of the study described In this paper Included a list of variables
anticipated to affect human performance in an Inference task and the Identification of
a candidate technique that can be used to measure the effects that these variables my
have on the inference task.

The author would like to thank the Air Force Systems Command, the Air Force Office
of Scientific Research, and the Southeastern Center for Electrical Engineering
Education for making possible a very Interesting and rewarding Summer Fellowship at the
Air Force Numan Resources Laboratory, Vright-Patterson AFB, Ohio. She would like to
express sincere appreciation to the Laboratory, in particular the Ground Operations
branch, for an exceptional working environment. Finally, she would like to thank
Rosemarie Preld;. for her enormous support and collaboration in a difficult
undertaking, ertram Cream for his insightful administrative guidance, Larry Reed for
many helpful discussions, and the other members of the branch for their professional
support and friendship.
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MANUAL AND COMPUTER-AIOE SEQUENTIAL

DIAGNOSTIC INFERENCE

I. INTRODUCTION

it is -oming increasingly obvious that computerized automation can be a useful aid in a
wide variety of positions in the armed services. This Is especially true in the world of Command
and Control (CZ ) where much of the work Involves complex situational assessment or "diagnostic
inference.* As technological complexities increase, human operators will have a more difficult

time trying to understand, integrate, and utilize the information made available to them. In

contrast to man's limited cognitive capacities and well-documented biases, 1' 2 a computer can

utilize and aggregate large volumes of information using predetermined optimal strategies that
are most appropriate for the situation at hand. It is no longer a question of whether computer

aiding will be used, but how it will be used.

Just as there are problems inherent in using a completely "manualm system to perform a

function, there are also problems in using a completely 'automated' system. These problems have
been discussed at length elsewhere; 2' 3 but let it suffice to say that at the current time,

expert systems are not sufficiently advanced to make automated systems infallible or able to deal

with the multitude of unforeseen occurrences that are likely in the C2 environment.

Since neither man nor machine is solely capable of performing situational assessment
functions, the solution lies in using both together and relying on the strengths of each

(hopefully also minimizing the weaknesses of each). To integrate man and machine successfully
for a given task, one must understand how the human perceives and performs the task, and how the

machine can be programmed to perform the task (or parts of the task), and then analyze the best
way to fit the two together. In the procurement cycle, a common method for developing a

computerized aiding system is to intuitively develop a software system that seems as though it
could do the job. Little attention Is paid to analysis of the entire task and which subtasks
could be best performed by the man and which are best left to the machine (a few exceptions do

exist). Consideration is usually not given beforehand to how the operators will react to the
aiding system nor to what variables will lead to their acceptance or rejection of the new

system. Instead, an automated system is designed and a prototype built. Any modifications
necessary to make the system compatible with the operator are usually done after this point.

This leads to only those changes that seem absolutely necessary and the result is an overall

mai-machine system that is much less effective and efficient than what could have been achieved.

Part of the problem outlined above results from an inadequate knowledge concerning three

vital questions: (a) How does the human operator perform the assessment task when unaided by
automation? (b) What subtasks are best performed by the operator, and what subtasks are best

erformed by the automation device? (c) What factors determine operator acceptance and use of

the automated system? The first question (how the operator performs the task) may seem

unnecessary to some. However, this information is needed because it directly affects the answers

to the second and third questions. That is, If we know how the operator performs the task (not
how his/her performance differs from some theoretically optimal strategy), we can determine

specifically what capabilities he/she has that we want to preserve In determining the optimal

man-machine subtask allocation. In addition, one can argue that how the operator performs the

task will largely affect his/her acceptance of the automation. If the automation Is extremely
different from or incompatible with the operator's way of perceiving and accomplishing the task,
then he/she will be less likely to accept and use that automation.

The theories and methodologies of cognitive psychology can be brought to bear on this

problem. By mapping out the cognitive processes or strategies that are used by the perceiver

Ii
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under various situational constraints, we can then measure how those processes change as a

function of providing a computer-aiding system.

1I. OBJECTIVES

The primary objective of this effort was to develop a predictive model of a diagnostic
inference task and how that task would be affected by implementation of an automated system.
This objective included the following specific goals:

1. Develop a descriptive model of an inferen!e task that Is representative of inference
tasks in the C2 system and would be amenable to laboratory research.

2. Determine appropriate techniques for measuring process and performance in the inference

task.

3. Determine a preliminary set of independent variables expected to affect the inference
process (and performance).

4. Develop a predictive model of the effects of automation on the operator's inference

p'ocesses.

Acccplishing these goals would serve two purposes: provide guidance to researchers at the Air
Force Human Resources Laboratory concerning variables of critical interest in relcted field
research and provide a framework for follow-on laboratory research designed to answer some of the
questions outlined earlier.

11. DESCRIPTION OF THE INFERENCE TASK

Diagnostic :n*--,r* will be defined as the process of using available cues to determine the
underlying or 'unseen' cause of those cues. An example Is medical diagnosis where the doctor
must infer a disease that causes some set of cues (symptoms). If the available cues are very
informative, the inference will be accurate and made with a high degree of confidence. However,
it is often the case that the cues do not convey enough Information, and the inference task takes

place amid psychological uncertainty.

In the past, most research addressing this type of task assumed a 'single-stage" process,
wherein the perceiver received the cues and somehow aggregated or operated upon the information
and derived a judgment. This was a popular view for some time, partially because it was amenable
to laboratory experimentation and formal mathematical description and analysis.4  Two
approaches were common: The first was to develop a formal mathematical model (such as Bayes
Theorem) to specify optimal performance and then to fit that model to data obtained with human
subjects;S the other approach was to use linear regression models to assess how the subjects

were combining or utilizing the cues in generating the inference. 6' 7  Research questions
addressed in these latter studies included such topics as, what cues are predominantly utilized
by Reople,7 how many dimensions or cues are used for various tasks and whether these cues are

same as In the 'real world,'8  and whether experts cluster or weigh cues in a similar

fashion.9,
10

The appropriateness of these models has been debated recently; therefore, this issue will not
be discussed at length. However, two points will be reviewed. The first is the criticism that

most laboratory Inference tasks involve simultaneous and orthogonally manipulated cues. This cue

independence Is seen as being highly artificial and unrealistic.1" Since humans develop

6I
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cognitive skills to deal with a real and complex world, it is not surprising that they perform

*suboptimally" on these inference tasks where no intercue correlations are preserved.

The second criticism with these approaches suggests that the inference task should be treated
not as a single-stage process but as a multiple- ]e process. 12  This is not to say that the

reception and the integration of cues are different stages, but that the acquisition of cues or

characteristics takes place over time and that this process should be reflected in the

theoretical models.

In line with these criticisms and recent views In cognitive psychology, it will be assumed

that the inference task of interest takes place in a complex situation where the perceiver must

sequentially seek information to make the inference judgment. In addition, that information is

typically incomplete and varies in its diagnosticity. The perceiver starts with one or two cues

and then searches for others either to confirm hypothesized causes or to suggest new ones. The
inference process Is viewed as a "constructive' process, much like building a jigsaw puzzle. One

does not need all of the pieces to be able to infer the nature of the picture; instead, the
ability to draw the inference will depend on the combined information provided by the pieces put

together.

In psychological terms, the perceiver uses both Conceptually-Driven processing (where the

hypothesized cause suggests cues to seek) and Data-Driven processing (where cues suggest

plausible hypotheses). The cyclic procedure continues until the perceiver exceeds some certainty

criterion that he/she knows the Identity of the cause. In some cases, a lack of Information will

prevent that criterion from being reached at all.

IV. MEASURING PROCESS AND PERFORMANCE

It was suggested that the inference judgment is constructed over time as information is

acquired. This implies that it is important to measure the process by which the perceiver is

coming to a conclusion, as well as to measure performance per se. Each of these Issues will be

addressed in turn.

A. PROCESS

Several methodologies for measuring judgment or decision 'processO have been suggested.
Payne13 is a predominant supporter of two of these methods known as process tracing. The first

method is a class of measurement techniques where the subject's information acquisition is

monitored. The subject must view or select information in a way that can easily be observed and

recorded. Data are obtained concerning what cues the subject samples, in what order, how many

are sampled, and the amount of time for the cue sampling.

The other method of process tracing Is the collection of verbal protocol. In this technique,

the subject is simply asked to "think out loud' while performing the task. Although this type of

data can give insight to the subject's strategies, it cannot be assumed that the subject will
always verbalize the cognitive processes as they occur.

After assessing the various process measureient techniques, a method was decided upon which
seemed most suitable to an inference task. The Inference is actually a classification task,

where the perceiver must choose between class A, class I, class C, and so on (also possibly 'none

of the above'). The process measure being suggested consists of two aspects:

1. Allowing the subjects to acquire whichever cues they desire until they feel reasonably
confident In their choice (this Is similar to the previously described information acquisition

measure).

7i
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2. Asking the subject after each cue acquisition to give the hypothesized cause(s), along
with a subjective certainty rating (i.e., 1 - not certain at all, 7 - extremely certain). An
example of these measures will be presented shortly.

B. PERFORMANCE

In addition to studying cognitive processes or strategies engaged in by the perceiver, it is
informative to determine how well the operator is able to infer the cause of the cues. The most
appealing measures are suggested by Signal Detection Theory (SOT) because it allows for separate
measurement of discrimination capabilities and subjective bias.14  However, standard SDT
measures cannot at this time be applied to more than a two-category (Signal-Noise) task. Swets
and Pickett15 discuss the problem of multiple-category discrimination and suggest using Percent
Correct as a reasonable solution. This is justified because the inference task for multiple
causes is actually conceptually similar to a forced-choice task. It was therefore determined
that Percent Correct could be used as a performance measure in the diagnostic inference task.

To summarize the Inference task and associated measures of process and performance:

1. The subject is given an initial cue.

Z. The subject verbalizes one or more hypotheses, along with a certainty rating.

3. The subject samples a new cue of his/her choice.

4. The subject verbalizes revised hypothesis(es), along with new certainty rating.

(continues until s,,'-ect exceeds some subjective certainty criterion and chooses to stop)

An example of data collected from a subject is given below:

Class A Class B Neither
Cue 1 1

Cue 2 2 2

Cue 3 4

Cue 4 7

It can be seen that after the first cue sampling, the subject hypothesized class A as the cause,
with a certainty rating of 1. However, after receiving additional cues, the hypothesized cause
was switched to class B, with increasing certainty.

To determine performance (Percent Correct) from the data, a cutoff point must be chosen for
the certainty scale. For example, correct might be arbitrarily defined as Omore than 4.1 If the
correct answer for the example was class B, the subject would be scored as "correct" on only the
last observation given above. The advantage of this method is that accuracy of the inference can
be assessed without the subject's having to make a strictly Yes-No decision. (This is a way of
'setting* the subject's decision criterion.) With this method of data collection, it is possible
to measure a variety of process and performance variables as the subject samples the infirmation:

1. Information sampled.
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2. Hypotheses generated.

3. Hypothesis transition (at what point they give up and generate another).

4. Subjective certainty criteria.

5. Accuracy.

(I. FEASIBILITY STUDY

A pilot study was conducted during the Summer Fellowship period to determine the

appropriateness of the above variables. Eight subjects (students at Wright State University,

Dayton, Ohio) received course credit for participating in the study.

Subjects were first given fictitious names of two diseases, along with eight case studies for

each disease. The case studies were described in terms of patient initials and occupations and a

set of symptoms that varied in number from three to seven. There were eight total symptom

dimensions (such as blood pressure, weight loss, etc.). Four of the dimensions were strongly

associated with disease A, and the other four were strongly associated with disease 0. However,

there was some overlap of symptoms across diseases. After subjects reported that they were

familiar with the disease characteristics (approximately 15 minutes), they were given 32 new case

studies to diagnose. For each one, they were presented with a 3x5 index card with initials,

occupation, and one symptom. They were also presented with seven other cards with a symptom

dimension (e.g., "blood pressure') labelled on one side. They were told to turn any card over

that they wished, and after each one, to tell the observer their hypothesis and certainty

rating. Data were collected in a manner corresponding to the example shown previously.

Based on the theoretical considerations outlined earlier, two effects were expected:

1. The certainty ratings would start low and slowly increase until some criterion was

reached; at this point, subjects would discontinue information acquisition.

2. Percent Correct would be a positive function of the number of symptoms sampled on a given

trial.

Data relevart to the first hypothesis are presented in Figure 1. It can be seen that

certainty ratings did, in fact, start relatively low and increase over cue samples; the rate of

increase was highest for trials where subjects sampled only four cues, and lowest for trials

where subjects sampled eight cues. Notice that for trials where all symptoms were utilized, the

certainty rating never reached a level equal to those for the other trials. That is, a

subjective certainty criterion of approximately 5 was exceeded in all but those trials where

subjects simply did not have enough information to generate an inference with a high degree of

confidence.

3

Number of Cues Sampled

Figure 1. Subjective Certainty as a Function of Cuss Sampled.
9

4.t



i i/
'Ii

This pattern in the Certainty data is consistent with the Accuracy (Percent Correct) data

shown in Figure 2. A liberal cutoff was arbitrarily chosen so that 03 and above, for the
Certainty rating was considered a OcorrectO answer. Still. the scores were not remarkably high

(mean % correct for all trials was .66). This would indicate that subjects were not able to
completely learn the correct structure of the disease-symptom associations. Performance varied

widely from subject to subject, with a range of .SO to .97 for the eight subjects.

.90.

.80
.80-

.73
.70

.70, .67

.62
.60.

U .50,

4e 5 6 7 8

Number of Cues Sampled

Figure 2. Accuracy as a Function of Cues Sampled.

Figure 2 shows that subjects' perceived uncertainty had some basis, In that performance

decreased as the subjects utilized a greater total number of symptoms. Interestingly, both data

sets show the name pattern of an increase in accuracy and subjective certainty for trials where

scven cues were sampled. Additional studies will be conducted to determine whether this effect

holds true for larger sets of data.

It can be seen from the data collected thus far that the process and performance measures are

appropriate for the task and yield a rich variety of information concerning the perceiver's

strategy. (It should be noted that additional, more fine-grained analyses are planned.)

V, VARIABLES AFFECTING THE INFERENCE PROCESS

Inference process and performance are each affected by various situational constraints.

These include characteristics of the perceiver, of the task, and of the situational environment
from moment to moment. A real-world illustration of this complex situation will be described as

a way of introducing situational constraints which affect process and performance variables.

An Important inference function within the C2 network is that of the radar operator (and/or

officer) who must determine the identity of aircraft showing up on the radar scope. This person

receives a "track* on the scope and must 'infer' the identity of the aircraft, using auxiliary
pieces of information or "cues." These pieces of information include Flight Plan Data; Special

Codes emitted by the aircraft (friendly aircraft); speed, heading, electronic emissions, and

intelligence data; and possibly, visual identification information. Some of this information

will be quite diagnostic (e.g.. the Codes), while other data will not be particularly diagnostic

(speed or heading). Given enough time, the operator could identify almost any track. If nothing

10
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else, the operator could send someone up to look at the aircraft. The problem is based on the

fact that the operator officially has a maximum of 2 minutes to identify the aircraft. In

addition, sending someone up for visual Identification ,- very costly. In wartime conditions.
the operator will have to identify many tracks in a very snort period of time.

A preliminary list of variables was developed that are considered most important in

determining the operator's performance (as defined by accuracy). These situational constraints

on performance are shown in Figure 3; for example, 'Time StressO is a variable that will
negatively impact performance. Time Stress will be determined by the number of tracks the

operator has to Identify, how far away the aircraft are from Important locations, and the alert

status at the time (i.e.. white, yellow, or red alert).

Operator - -

Accuracy--- - - - - ---- m

oObet Reality Choice o r

/

Figure 3. Variables Affecting Operator Perforae.

The same variables are assumed to also impact the process of generating an inference. Time
stress will result in fewer cues considered and a lower subjective certainty criterion (point
where the percelver is wllifng to stop collecting data). Tim stress Is also expected to
decrease the number of hypotheses generated and considered during the inference process.

Suspiciousness of the aircraft travel will increase the likelihood of an enemy aircraft being

hypothesized, resulting in cues being sampled which will confirm (or disconfirm) that
hypothesis. Diagnosticity or predictive validity of the cues will result in both a need to
sample fewer cues and a higher subjective certainty concerning the inference. Finally, operator
experience is assumed to enhance the inference performadce, but It is not totally clear how that
variable will impact the process.

VI. INPACT OF AUTONATION

Before discussing the impact of implementing a computer-aiding system, it is necessary to
define the nature of the automted system. Several researchers have developed taxonoules of

II
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types of automation;16 most are admittedly imprecise. For the present purposes, a continuum

will be assumed, with a completely manual method of task accomplishment at one end and complete

automation at the other end of the continuum. An example of this type of continuum is shown in

Figure 4. One of the more prevalent types of automation Is given on the top right of the scale;

that Is. the computer completely performs the task and provides an "answer" to the operator, who

then decides if he/she wants to believe and utilize that answer. This type of automation Is

currently being planned for the radar identification task described earlier.

Computer Onl Computer Complety
Provides Comput Performs Performs Task and
Adon.matn to Task Unti Fail. Operator Decides
Operator i Same Then Operator Whet to "Accept"
Efficient Form Attempts Task Answer

Manual: Computer Suggests Computer Analytically Automated:
Operator Does Mot Likly Answers Computes Answer Computer Does
All the Work or Hypolhess: Based On input All the Work

Operator Does the From Operator
Rest

Figure 4. Degrees of Automation.

A predictive model can be outlined at this point, describing the impact of impl-menting this

type of automation. First, we can say that most of the variables expect:d to affect the human

perceiver will probably not affect the performance of the automct:a system. Thus, under
conditions of stress, the human performance will deteriorate, whereas machine performance will
not. The only variables expected to affect machine performance will be the characteristics of

the cues themselves (so, Figure 5). This puts the operator in the place of deciding whether to

,trust, the mach;.., kiuving that the machine can perform the task more quickly and objectively

in times of duress. The operator's decision to use the answer provided by the system will depend

on how much time he/she has, the seriousness of the consequences, and the nature of the
information (e.g., If it Is a suspicious activity). In addition, the operator's decision to use

the answer provided will strongly depend on the operator's feelings about his/her own ability

versus the machine's history of reliability and accuracy. If the machine has a relatively low

•hit rate.' the operator will be more Inclined to consider Its answer worthless and go mostly on

his/her own judgment.

An interesting point which should be considered is the possibility that the operator might

treat the answer provided by the machine as merely manother cue." Rather than determining

his/her inference based on the standard set of cues and then comparing this with the automated

choice, the operator may simply use that choice during the inference process, treating it as

he/she does all of the other pieces of information.

12
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operator --------
Experience

Accuracy -

Figure 5. Ilemntation of Automtion in Inference Tak.

I VII. RECONM[NDATIONS

The previous section outlined hypothesized effects of situational constraints on nference

process and performance. In addition, a preliminary predictive medel was constructed relating
the Implementation of an automated subsystem within a =anuei inference system. The

relationships between the variables need to be obtained emirically to confirm the theoretical

assumptions.

I propose to do this by developig a laboratory inference task that has the characteristics

outlined earlier (complex, sequential cue acquisition, etc.). This inference task will be run on

a computer terminal so that the subject can request cues and respond with hYpotheses and
certainty ratings. This will allow collection of data relevant to the process and performnce

variables outlined previously.

For assessment of the processes used in a mnually performed inference task, situational

constraints will be manipulated and their effects on process and performnce variables masured.
a This will allow determination of what processes are utilized under various task conditions.

A second phase of the follow-on research will be to provide the subject with a computer Aid.

ThiS will be a simulated comuter-aiding system because the answer to be given to the subject
will be predetermined by the Experimnter. In this way, the accuracy of the answers provided to

the perceiver can be manipulated as an independent variable. It is expected that as accuracy of
the automated system increases, the use of the machine will also increase in an exponential
fashion. Situational constraints wTi also be varied, similar to those used in assessmnt of the
ompletely mnual inference process.
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